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CHAPTER 1

Introduction

Let Ω be a nonempty subset of the complex plane C. By H(Ω) we shall mean
the set of all analytic functions on Ω.

There are several additional structures that can be applied to this set. We can
define addition and scalar multiplication on H(Ω) in the obvious fashion: for f , g
in H(Ω) and λ ∈ C define functions f + g and λf by(

f + g
)
(z) = f(z) + g(z);(

λf
)
(z) = λ · f(z) (z ∈ Ω).

Thus, H(Ω) becomes a linear space over the field of complex numbers.
Next, we can define a topology on H(Ω) as follows. A sequence f1, f2, . . . of

functions in H(Ω) is said to converge locally uniformly to a function f ∈ H(Ω) if,
for every compact subset K of Ω, the sequence f1, f2, . . . converges to f uniformly
on K. It can be shown that there exists a metric d on H(Ω) such that

fn
d→ f if and only if fn → f locally uniformly.

Furthermore, the space H(Ω), when endowed with this metric, becomes a complete
metric space.

When people speak of H(Ω), they usually view this set as a linear space with
the topology defined above. There are, however, other possible topologies, and this
is where things start to get interesting.

Consider the space of all functions in H(Ω) that are square-integrable with
respect to the Lebesgue measure. This space is usually denoted by A(Ω). On
this space we have two topologies: the topology of locally uniform convergence,
inherited from H(Ω), and the so-called L2-topology, generated by the norm

‖f‖ =
(∫

Ω

|f |2 dλ
)1/2

.

(Here λ denotes the Lebesgue measure on Ω.)
It turns out that the L2-topology and the topology of locally-uniform conver-

gence are related. The key to this is the following rather amazing inequality, or
rather set of inequalities:

for every compact subset K of Ω there exists a constant C ∈
[ 0,∞) such that∣∣f(z)

∣∣2 ≤ C ·
∫

Ω

|f |2 dλ for all f ∈ H(Ω).

This means that every sequence in A(Ω) that converges in the L2-topology
also converges locally uniformly. This phenomenon is typical of analytic functions.
Nothing even remotely like this is true in the general theory of L2-spaces.

One can prove that the space A(Ω), when viewed with the L2-norm, is a Hilbert
space. (In fact, this paper contains just such a proof.) Hilbert spaces of analytic,
square-integrable functions are called Bergman spaces, after S. Bergman, who was
one of the first to make a detailed study of such spaces. Bergman spaces turn
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1. INTRODUCTION 3

up in various branches of mathematics. Historically they have been used to attack
problems related to conformal mapping, certain extremal problems, and differential
equations. For instance, see [3], and [4]. The focus in the study of Bergman spaces
appears to have shifted away from applied mathematics into operator theory, see
[1] for a fairly recent example.

In this paper we are mostly interested in measures that are like the Lebesgue
measure in that they satisfy inequalities similar to the above. To honour Bergman
(and, to be honest, more importantly to make this paper a bit more readable) I
will call these measures Bergman measures. It should be noted that this is not a
term that is used in the literature.



CHAPTER 2

Examples of Bergman Measures

In this chapter, we define Bergman measures. We prove a simple lemma that
enables us to construct a lot of these measures.

Definition. Let Ω be a nonempty open subset of the complex plane C. Let
µ be a measure on the Borel-σ-algebra of Ω. Let us call the measure µ a Bergman
measure if the following two conditions are satisfied:

(i) µ(E) <∞ for every compact subset E of Ω;
(ii) for every compact subset E of Ω there exists a constant C ∈ [ 0,∞) such

that∣∣f(z)
∣∣2 ≤ C ·

∫
Ω

|f |2 dµ for all z ∈ E and every f ∈ H(Ω).

A measure that satisfies (i) (but not necessarily (ii)) is sometimes called a
Radon measure or a Borel measure. In this paper there are several proofs that
certain measures are Bergman measures. Each such proof contains two parts: a
part that proves (i), which is usually very trivial, and the interesting part, which
proves (ii).

It is possible, in theory, to study measures that satisfy (ii) but not (i). In
practice however nearly every measure that is encountered already satisfies (i),
therefore it does not hurt incorporating it into the definition. Also the theorems
become slightly better-looking this way.

There are a lot of Bergman measures. For example, the Lebesgue measure is
one. To see that we need the following crucial lemma. The lemma also helps to
construct other Bergman measures.

Lemma 2.1. Let Ω be an open subset of C. Let z ∈ Ω, r ∈ (0,∞) such that
∆r(z) ⊂ Ω. Let f ∈ H(Ω). Then∣∣f(z)

∣∣2 ≤ 1
πr2

∫
∆r(z)

|f |2 dλ.

Proof.∫
∆r(z)

f dλ =
∫ r

0

ρ

∫ 2π

0

f(z + ρeiθ) dθ dρ =
∫ r

0

ρ · 2πf(z) dρ = πr2f(z).

Using the Cauchy-Schwarz inequality for integrals, we see that∣∣πr2f(z)
∣∣2 =

∣∣∣∣∣
∫

∆r(z)

f dλ

∣∣∣∣∣
2

≤
∫

∆r(z)

|f |2 dλ ·
∫

∆r(z)

1 dλ

= πr2
∫

∆r(z)

|f |2 dλ. �

Theorem 2.2. Let Ω be a nonempty open subset of C. Then the Lebesgue
measure on Ω is a Bergman measure.
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2. EXAMPLES OF BERGMAN MEASURES 5

Proof. Let E be a compact subset of Ω. Clearly, λ(E) < ∞. Define the
number R as follows:

R = inf
{
|z − w| : z ∈ E,w ∈ C \ Ω

}
.

Then R > 0. (The number R may be infinite in some degenerate cases but this
does not affect our argument.) Choose a number r ∈ (0, R). Then

∆r(z) ⊆ Ω for every z ∈ E.

Let z ∈ E, f ∈ H(Ω). Then∣∣f(z)
∣∣2 ≤ 1

πr2

∫
∆r(z)

|f |2 dλ.

We now make an extraordinarily crude estimate by noting that∫
∆r(z)

|f |2 dλ ≤
∫

Ω

|f |2 dλ.

Thus, ∣∣f(z)
∣∣2 ≤ 1

πr2

∫
Ω

|f |2 dλ.

But this is exactly what we need to prove that λ is a Bergman measure. �

Before we proceed with more general examples of Bergman measures we need
to make a few preparations.

Definition. For any nonempty subset X of the complex plane, define a func-
tion

dX : C → [ 0,∞)
as follows:

dX(z) = inf
{
|z − w| : w ∈ X}.

The number dX(z) represents the distance from the point z to the set X,
informally speaking.

Lemma 2.3. Let X be a nonempty subset of C. Let z1 ∈ C, z2 ∈ C. Then∣∣dX(z2)− dX(z1)
∣∣ ≤ |z2 − z1|.

Proof. Let ε ∈ (0,∞). There exist w1, w2 ∈ X such that

|z1 − w1| ≤ dX(z1) + ε

and
|z2 − w2| ≤ dX(z2) + ε.

We then have

dX(z2)− dX(z1) ≤ |z2 − w1| − |z1 − w1|+ ε ≤ |z2 − z1|+ ε,

and
dX(z1)− dX(z2) ≤ |z1 − w2| − |z2 − w2|+ ε ≤ |z1 − z2|+ ε.

It follows that ∣∣dX(z2)− dX(z1)
∣∣ ≤ |z2 − z1|+ ε

for every ε > 0. But this is only possible if
∣∣dX(z2)− dX(z1)

∣∣ ≤ |z2 − z1|. �

Corollary 2.4. For every nonempty subset X of C the function dX is con-
tinuous.

Corollary 2.5. Let E be a nonempty, bounded subset of C. Let r ∈ (0,∞).
Let

F = {z ∈ C : dE(z) ≤ r}.
Then F is compact.
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Proof. Because E is bounded, F is bounded. Because dE is continuous, F is
closed. Hence F is compact. �

Theorem 2.6. Let Ω be an open subset of C, and let ω : Ω → (0,∞) be a
continuous function. Then the measure ωλ is a Bergman measure.

Proof. The proof is roughly the same as the proof that the Lebesgue measure
is a Bergman measure, except that we now have the weight function ω to deal with.
Let E be a compact subset of Ω. Since the function ω is continuous, it is bounded
on E, hence ωλ(E) < ∞. We are done if we can find a constant C ∈ [ 0,∞) such
that ∣∣f(z)

∣∣2 ≤ C ·
∫

Ω

|f |2 dωλ for all z ∈ E and all f ∈ H(Ω).

We may assume that E is not empty. Again let

R = inf
{
|z − w| : z ∈ E,w ∈ C \ Ω

}
.

Choose a number r ∈ (0, R). Let

F = {z ∈ C : dE(z) ≤ r}.

Then
E ⊆ F ⊆ Ω.

Since the set F is compact (see above) and the function ω is continuous, there exists
a number δ ∈ (0,∞) such that

ω(z) ≥ δ for all z ∈ F .

Let z ∈ E, and f ∈ H(Ω). Then ∆r(z) ⊆ F . Hence∫
∆r(z)

|f |2 dωλ ≥ δ

∫
∆r(z)

|f |2 dλ,

and ∣∣f(z)
∣∣2 ≤ 1

πr2

∫
∆r(z)

|f |2 dλ

≤ 1
δπr2

∫
∆r(z)

|f |2 dωλ

≤ 1
δπr2

∫
Ω

|f |2 dωλ. �

The previous theorem shows that a continuous, strictly positive weight function
gives rise to Bergman measures. It turns out that the weight function may even
vanish on certain parts of its domain, as long as it is nonzero ‘sufficiently often’
near the boundary of the domain.

Theorem 2.7. Let Ω be a nonempty open subset of C. Let ω : Ω → [ 0,∞) be a
measurable, locally integrable function. Let E0 be a compact subset of Ω such that
the function ω is continuous on Ω \ E0 and

ω(z) > 0 for all z ∈ Ω \ E0.

Then ωλ is a Bergman measure on Ω.

Proof. Let E be a compact subset of Ω. Since the function ω is locally
integrable, ωλ(E) <∞. Next, we try to find a constant C ∈ [ 0,∞) such that∣∣f(z)

∣∣2 ≤ C ·
∫

Ω

|f |2 dωλ for all z ∈ E and all f ∈ H(Ω).
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Consider the set E ∪ E0. This set is also a compact subset of Ω. If we can find a
constant for the union of E and E0, then certainly that constant will also do for E
itself. In other words: we may assume that

E0 ⊆ E.

Furthermore, we may also assume that the set E is not empty. Once again, let

R = inf
{
|z − w| : z ∈ E,w ∈ C \ Ω

}
.

Choose a number r ∈ (0, R). Define the set F as follows:

F =
{
z ∈ C : dE(z) ≤ 1

2
r

}
.

Clearly, the set F is compact, E ⊆ F , and

∂F =
{
z ∈ C : dE(z) =

1
2
r

}
.

Let

F ′ =
{
z ∈ C :

1
4
r ≤ dE(z) ≤ 3

4
r

}
.

The set F ′ is also compact, and ∂F ⊆ F ′. Furthermore, because E0 ⊆ E,

F ′ ⊆ Ω \ E0.

Since the function ω is continuous on Ω \E0, there exists a number δ ∈ (0,∞) such
that

ω(z) ≥ δ for all z ∈ F ′.
We have

∆ 1
4 r(z) ⊆ F ′ for all z ∈ ∂F .

Let z ∈ E, f ∈ H(Ω). The point z is also a member of the set F . From the
maximum principle, applied to the function f2, it follows that there exists a point
w ∈ ∂F such that ∣∣f(z)

∣∣2 ≤ ∣∣f(w)
∣∣2.

Now, ∫
∆ 1

4 r
(w)

|f |2 dωλ ≥ δ

∫
∆ 1

4 r
(w)

|f |2 dλ,

and ∣∣f(w)
∣∣2 ≤ 16

πr2

∫
∆ 1

4 r
(w)

|f |2 dλ

≤ 16
δπr2

∫
∆ 1

4 r
(w)

|f |2 dωλ

≤ 16
δπr2

∫
Ω

|f |2 dωλ,

Putting everything together, we see that∣∣f(z)
∣∣2 ≤ 16

δπr2

∫
Ω

|f |2 dωλ. �

The above proof rests on two observations. For every compact subset of Ω
one can construct a ‘ring’ inside Ω around that subset that is also compact and on
which the weight function is well behaved. Using the maximum principle one can
then ignore what goes on in the original subset, and inspect what goes on in the
ring instead.

We can take this idea one step further.
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Theorem 2.8. Let Ω be a nonempty open subset of C. Let ω : Ω → [ 0,∞) be a
measurable, locally integrable function that is such that there exists a sequence E0,
E1, E2, . . . of subsets of Ω and a sequence a0, a1, a2, . . . of numbers such that

• En is compact and not empty for all n ∈ N,
• En ⊆ E◦

n+1 for all n ∈ N,
•
⋃

n∈N En = Ω,
• an > 0 for all n ∈ N,
• ω(z) ≥ an for all n ∈ N and all z ∈ E◦

2n+1 \ E2n.
Then the measure ωλ is a Bergman measure.

Proof. Let E be a compact subset of Ω. Because the function ω is locally
integrable, ωλ(E) <∞. There exists a number n ∈ N such that

E ⊆ E◦
2n.

Let
r = inf

{
|z − w| : z ∈ E2n, w ∈ C \ E◦

2n+1

}
.

Because E2n ⊆ E◦
2n+1, we have r > 0. Also, r < ∞, because the set E2n is not

empty. Let

F =
{
z ∈ C : dE2n(z) ≤ 1

2
r

}
.

Then
E ⊆ F

and
∆ 1

4 r(w) ⊆ E◦
2n+1 \ E2n for all w ∈ ∂F .

Let z ∈ E, f ∈ H(Ω). Then z ∈ F . From the maximum principle, applied to
the function f2, it follows that there exists a w ∈ ∂F such that

∣∣f(z)
∣∣2 ≤ ∣∣f(w)

∣∣2.
Then ∣∣f(z)

∣∣2 ≤ ∣∣f(w)
∣∣2

≤ 16
πr2

∫
∆ 1

4 r
(w)

|f |2 dλ

≤ 16
anπr2

∫
∆ 1

4 r
(w)

|f |2 dωλ

≤ 16
anπr2

∫
Ω

|f |2 dωλ. �

The idea behind this is that we slice our set Ω into infinitely many compact
rings that together make up our original set. If the weight function stays a certain
distance away from zero on every other ring, we get a Bergman measure, even if
the function vanishes everywhere else.

Example. Define a function ω on ∆ as follows:

ω(z) =

{
1 if

[
1

1−|z|

]
is even;

0 otherwise.

Then ωλ is a Bergman measure.



CHAPTER 3

Properties of Bergman Measures

In the previous chapter we have collected a large number of Bergman measures.
Now we will try to prove some theorems about these measures.

Thus far, every measure we have inspected has turned out to be a Bergman
measure. One may wonder whether there are in fact measures that are not Bergman
measures. In fact, the zero measure is not a Bergman measure. This follows at once
from the following.

Lemma 3.1. Let Ω be a nonempty open subset of C, and let µ be a Bergman
measure on Ω. Then

µ(Ω) > 0.

Proof. Choose any point z ∈ Ω. Since the set {z} is compact, there exists a
constant C ∈ [ 0,∞) such that

1 ≤ C ·
∫

Ω

1 dµ = C · µ(Ω).

But this is only possible if µ(Ω) > 0. �

All Bergman measures we have constructed in the previous chapter live near
the boundary of their domain (to use a dodgy metaphor.) It turns out that this is
a fundamental property that is shared by all Bergman measures. This is expressed
by the following theorem, of which the above lemma is a special case. While the
above lemma gives us a rather trivial example of a non-Bergman measure, the next
theorem will provide us with very many, very nontrivial examples.

Theorem 3.2. Let Ω be a nonempty open subset of C. Let µ be a Bergman
measure on Ω. Let E be a compact subset of Ω. Then

µ(Ω \ E) > 0.

Proof. The case when the set E is empty is taken care of by the previous
lemma. So we can assume that E is not empty.

Suppose, µ(Ω \ E) = 0.
Choose a point z0 ∈ Ω \ E. Let

R = sup
{
|z − z0| : z ∈ E

}
.

Since the set E is compact and not empty, 0 < R <∞. Also, because E is compact
and Ω is open, there exists a point z1 ∈ Ω such that

|z1 − z0| > R.

The set {z1} is compact. There exists a constant C ∈ [ 0,∞) such that∣∣f(z1)
∣∣2 ≤ C ·

∫
Ω

|f |2 dµ for all f ∈ H(Ω).

Let n ∈ N. Applying the previous inequality to the function

z 7→
(
z − z0
R

)n

,

9



3. PROPERTIES OF BERGMAN MEASURES 10

we see that∣∣∣∣z1 − z0
R

∣∣∣∣2n

≤ C ·
∫

Ω

∣∣∣∣z − z0
R

∣∣∣∣2n

dµ(z)

= C ·

(∫
E

∣∣∣∣z − z0
R

∣∣∣∣2n

dµ(z) +
∫

Ω\E

∣∣∣∣z − z0
R

∣∣∣∣2n

dµ(z)

)

= C ·
∫

E

∣∣∣∣z − z0
R

∣∣∣∣2n

dµ(z)

≤ C · µ(E).

Let x =
∣∣(z1−z0)/R∣∣2. Since µ(E) <∞, the sequence x, x2, x3, . . . is bounded.

But that can’t possibly be true, because x > 1.
The assumption that µ(Ω\E) = 0 leads to a contradiction. So µ(Ω\E) > 0. �

The central idea in the proof is that we can construct a sequence of functions
that are uniformly bounded on a compact subset, but that ‘explode’ on a certain
point outside of that subset.

Another application of this idea is the following.

Theorem 3.3. Let Ω be a nonempty open subset of C. Let µ be a Bergman
measure on Ω. Let h ∈ H(Ω). Let the set

X =
{
z ∈ Ω :

∣∣h(z)∣∣ > 1
}

be such that
µ(Ω \X) <∞

and
µ(X) = 0.

Then X is empty.

Proof. Let z ∈ Ω. We are done if we can show that
∣∣h(z)∣∣ ≤ 1. Choose a

constant C ∈ [ 0,∞) such that

|f(z)|2 ≤ C ·
∫

Ω

|f |2 dµ for all f ∈ H(Ω).

Let n ∈ N. Applying the previous inequality to the function hn, we have∣∣h(z)∣∣2n ≤ C ·
∫

Ω

|hn|2 dµ

= C ·
∫

Ω\X
|hn|2 dµ

≤ C ·
∫

Ω\X
1 dµ

= C · µ(Ω \X).

Since µ(Ω\X) <∞, the sequence n 7→ hn(z) is bounded. But that is only possible
if
∣∣h(z)∣∣ ≤ 1. �

The theorem above can help us show that certain subsets cannot have measure
zero, by constructing appropriate functions.

Example. Let µ be a Bergman measure on the unit disc. To simplify matters
we assume that µ is finite.

Let r ∈ (0, 1).
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Define a function f on the unit disc by

f(z) =
1 + z

1− z
.

Let D1 be the disc with centre 1 − r and radius r. Then D1 touches the unit
circle at 1. The function f maps D1 onto the half-plane {w ∈ C : <w > 1/r − 1}.
Define the function h1 ∈ H(∆) by

h1(z) = exp
(
f(z)− (1/r − 1)

)
.

It is obvious that, for every z ∈ ∆,∣∣h1(z)
∣∣ > 1 ⇐⇒ z ∈ D1.

It follows that µ(D1) must be nonzero.
Consider the sector D2 = {z ∈ D1 : −π/4 < arg(1 − z) < π/4}. Using

elementary calculations one can show that the reverse image under f2 of the half-
plane

{
w ∈ C : <w > (1/r − 1)2

}
, which is a nonempty set, is wholly contained

within D2. Using the function

h2(z) = exp
(
f2(z)− (1/r − 1)2

)
we see that µ(D2) must be nonzero.

In fact we can go one step further. Let D3 be the sector {z ∈ D1 : −π/6 <
arg(1 − z) < π/6}. Then the nonempty reverse image under f3 of the half-plane{
w ∈ C : <w > (1/r − 1)3

}
is wholly contained within D3. Again we see that

µ(D3) > 0.
We see that we can find sectors that have nonzero measure with ever smaller

angles, up to π/3, simply by increasing an exponent. Unfortunately this procedure
breaks down at exponent 4. The reverse image under f4 of a half-plane is no longer
contained within a sector with angle π/4.

It is still true, however, that the measure of each sector at the unit circle must
be nonzero. One can construct an entire function that is bounded, except on a
horizontal strip (see [2]). Using appropriate variations of this function one can
show that each sector at the unit circle must have nonzero measure. Unfortunately
the construction of this function is far from elementary and far beyond the scope
of this paper.

Next, we prove two generalisations of lemma 3.1 and theorem 3.2.

Lemma 3.4. Let Ω be a nonempty subset of C. Let µ be a Bergman measure
on Ω. Let g ∈ H(Ω) be such that ∫

Ω

|g|2 dµ = 0.

Then g = 0.

Proof. Let z ∈ Ω. The set {z} is compact, hence there exists a C ∈ [ 0,∞)
such that ∣∣g(z)∣∣2 ≤ C ·

∫
Ω

|g|2 dµ

But that means that g(z) must be zero. �

Theorem 3.5. Let Ω be a nonempty, connected, open subset of C. Let µ be a
Bergman measure on Ω. Let E be a compact subset of Ω. Let g ∈ H(Ω) be such
that ∫

Ω\E
|g|2 dµ = 0.

Then g = 0.
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The proof is similar to that of theorem 3.2, with a slight twist.

Proof. We have just proved this theorem in case the set E is empty. So now
we may assume that E is not empty. Let z0 ∈ Ω \ E. Let

R = sup
{
|z − z0| : z ∈ E

}
.

Then 0 < R <∞.
Let z ∈ Ω be such that |z − z0| > R. The set {z} is compact. Hence, there

exists a constant C ∈ [ 0,∞) such that∣∣f(z)
∣∣2 ≤ C ·

∫
Ω

|f |2 dµ for all f ∈ H(Ω).

Let n ∈ N. Then∣∣∣∣(z − z0
R

)n

· g(z)
∣∣∣∣2 ≤ C ·

∫
Ω

∣∣∣∣(w − z0
R

)n

· g(w)
∣∣∣∣2 dµ(w)

= C ·
∫

E

∣∣∣∣(w − z0
R

)n

· g(w)
∣∣∣∣2 dµ(w)

≤ C · µ(E) ·
∫

E

|g|2 dµ(w)

We see that ∣∣∣∣(z − z0
R

)n

· g(z)
∣∣∣∣2 ≤ k

for each n ∈ N, where k is some finite constant. But that is only possible if g(z) = 0.
The function g vanishes on the set {z ∈ Ω : |z− z0| > R}. This set is open and

not empty. Since Ω is connected, g must vanish everywhere. �

The theorem is somewhat blemished by the fact that we now suddenly require
the set Ω to be connected. In fact the theorem is true for any open subset of C.
To see this we need the following lemma.

Lemma 3.6. Let Ω be a nonempty open subset of C. Let µ be a Bergman
measure on Ω. Let Ω′ be a component of Ω. Then the restriction of µ to Ω′ is a
Bergman measure on Ω′.

Proof. Let µ′ be the restriction of µ to Ω′. Let E be a compact subset of Ω′.
Obviously, µ′(E) <∞. There exists a constant C ∈ [ 0,∞) such that∣∣f(z)

∣∣2 ≤ C ·
∫

Ω

|f |2 dµ for all f ∈ H(Ω).

Let g ∈ H(Ω′). Define a function g̃ on Ω as follows:

g̃(z) =

{
g(z) if z ∈ Ω′;
0 otherwise.

(z ∈ Ω)

Then g̃ ∈ H(Ω). Let z ∈ Ω′. Then∣∣g(z)∣∣2 =
∣∣g̃(z)∣∣2 ≤ C ·

∫
Ω

|g̃|2 dµ = C ·
∫

Ω′
|g|2 dµ′. �

Theorem 3.7. Let Ω be a nonempty open subset of C. Let µ be a Bergman
measure on Ω. Let E be a compact subset of Ω. Let g ∈ H(Ω) be such that∫

Ω\E
|g|2 dµ = 0

Then g = 0.
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Proof. Let z ∈ Ω. Let G be the component of Ω that contains z. The
restriction of µ to G is Bergman measure on G. Since E ∩G is compact, and∫

(Ω\E)∩G

|g|2 dµ = 0

it follows that g(z) = 0. �

The following result is much deeper.

Theorem 3.8. Let Ω be a nonempty open subset of C. Let µ be a Bergman
measure on Ω. Let E be a compact subset of Ω. Then there exists a constant
c ∈ [ 0, 1) such that∫

E

|f |2 dµ ≤ c ·
∫

Ω

|f |2 dµ for all f ∈ H(Ω).

The following proof can be found in [1].

Proof. Suppose, such a constant does not exist.
Then there exists a sequence of functions f1, f2, f3, . . . in H(Ω) such that∫

E

|fn|2 dµ >
(

1− 1
n

)∫
Ω

|fn|2 dµ for each n ∈ N∗.

Then, for each n ∈ N∗,

0 <
∫

Ω

|fn|2 dµ <∞.

Define another sequence g1, g2, g3, . . . as follows:

gn =
(∫

Ω

|fn|2 dµ
)− 1

2

· fn (n ∈ N∗.)

Let n ∈ N∗. Then ∫
Ω

|gn|2 dµ = 1,

and ∫
E

|gn|2 > 1− 1
n
.

Hence ∫
Ω\E

|gn|2 <
1
n
.

It follows that
lim

n→∞

∫
E

|gn|2 dµ = 1,

and
lim

n→∞

∫
Ω\E

|gn|2 dµ = 0.

The sequence g1, g2, g3, . . . is locally uniformly bounded, and hence has a
locally uniformly converging subsequence gn1 , gn2 , gn3 , . . . . Let

g = lim
k→∞

gnk
.

Then g ∈ H(Ω). By dominated convergence,∫
E

|g|2 dµ = lim
k→∞

∫
E

|gnk
|2 dµ = 1,

but Fatou’s lemma says that ∫
Ω\E

|g|2 dµ = 0.

It follows that g = 0, and hence 0 = 1. But that is absurd. �
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The above theorem states that the integral of the square of a function over a
compact subset always stays a certain distance away from the overall integral.

The following result is presented as a corollary, but it is in fact equivalent to
the above. (In fact in [1], the above proof is used in a proof of 3.9.)

Corollary 3.9. Let Ω be a nonempty open subset of C. Let µ be a Bergman
measure on Ω. Let E be a compact subset of Ω. Then there exists a constant
C ∈ [ 1,∞) such that∫

Ω

|f |2 dµ ≤ C ·
∫

Ω\E
|f |2 dµ for all f ∈ H(Ω).

Proof. Let c ∈ [ 0, 1) be such that
∫

E
|f |2 dµ ≤ c ·

∫
Ω
|f |2 dµ for all f ∈ H(Ω).

Let f ∈ H(Ω). Then∫
Ω

|f |2 dµ =
∫

E

|f |2 dµ+
∫

Ω\E
|f |2 dµ ≤ c ·

∫
Ω

|f |2 dµ+
∫

Ω\E
|f |2 dµ.

Hence, ∫
Ω

|f |2 ≤ 1
1− c

∫
Ω\E

|f |2 dµ. �

The above can be used to construct more Bergman measures. In fact, it is now
easy to prove the following.

Theorem 3.10. Let Ω be a nonempty subset of C. Let µ be a Bergman measure
on Ω. Let ν be a measure on Ω that is such that there exists a compact subset E0

of Ω such that
ν(E0) <∞

and
ν(X) = µ(X) for every measurable X ⊆ Ω \ E0.

Then ν is a Bergman measure. In fact, there exists a constant C ∈ [ 0,∞) such
that ∫

Ω

|f |2 dµ ≤ C

∫
Ω

|f |2 dν for all f ∈ H(Ω).

Proof. Because ν(E0) < ∞ and µ and ν are the same outside of E0, the
measure ν has the property that ν(E) <∞ for every compact E ⊆ Ω.

By corollary 3.9, there exists a C ∈ [ 1,∞) with∫
Ω

|f |2 dµ ≤ C ·
∫

Ω\E0

|f | dµ for all f ∈ H(Ω).

Choose such a C. Let f ∈ H(Ω) Then, again because the measures µ and ν agree
outside E0, ∫

Ω\E0

|f |2 dµ =
∫

Ω\E0

|f |2 dν,

hence ∫
Ω

|f |2 dµ ≤ C ·
∫

Ω\E0

|f |2 dµ

≤ C ·
∫

Ω\E0

|f |2 dν

≤ C ·
∫

Ω

|f |2 dν.

Since µ is a Bergman measure it follows easily that ν is one too. �

Note that the above theorem yields another, completely different, proof of
theorem 2.7.



CHAPTER 4

The Bergman Space and the Bergman Kernel

Definition. Let µ be a Bergman measure on a nonempty open set Ω. We
define the linear space A(Ω, µ) as follows:

A(Ω, µ) =
{
f ∈ H(Ω) :

∫
Ω

|f |2 dµ <∞
}
.

In other words, A(Ω, µ) = H(Ω) ∩ L2(µ).
For f, g ∈ A(Ω, µ), define

〈f, g〉 =
∫

Ω

f · g dµ.

We have already seen that a function f for which 〈f, f〉 = 0 must be zero, so 〈 , 〉
is an inner product on A(Ω, µ). This enables us to define a norm on that space.
For f ∈ A(Ω, µ), define

‖f‖ =
√
〈f, f〉.

When we talk about things like ‘converging’, ‘completeness’, etc. in A(Ω, µ) we
will view the space with the norm defined above, unless explicitly stated otherwise.

Theorem 4.1. Let Ω be a nonempty open subset of C, and µ be a Bergman
measure on Ω. Then the space A(Ω, µ) is complete.

Proof. Let f1, f2, . . . be a Cauchy sequence in A(Ω, µ).
Let E be a compact subset of Ω. Choose a number C ∈ (0,∞) such that∣∣g(z)∣∣2 ≤ C ·

∫
Ω

|g|2 dµ for all z ∈ E and all g ∈ H(Ω).

Let ε > 0. There exists an N ∈ N∗ such that

‖fn − fm‖ ≤
ε√
C

for all n,m ∈ N∗ with n > N,m > N .

For each z ∈ E, and every n,m ∈ N∗ such that n > N , m > N ,∣∣fn(z)− fm(z)
∣∣ ≤ √

C · ‖fn − fm‖ ≤ ε.

From this it follows that there exists a function f ∈ H(Ω) such that

fn → f locally uniformly.

On the other hand, by the Riesz-Fischer theorem, there exists a function f̃ ∈
L2(µ) such that

fn(z) → f̃(z) for almost every z ∈ Ω
and

lim
n→∞

‖fn − f̃‖ = 0.

But then f = f̃ almost everywhere. We conclude that f ∈ A(Ω, µ) and that
the sequence f1, f2, . . . converges to f in the L2-sense. �

The space A(Ω, µ) is called the Bergman space associated with Ω and µ. The
above theorem states that every Bergman space is a Hilbert space.

15
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Theorem 4.2. Let Ω be a nonempty open subset of C and let µ be a Bergman
measure on Ω. Then for every z ∈ Ω there exists a unique function Kz ∈ A(Ω, µ)
such that

f(z) =
∫

Ω

f ·Kz dµ for every f ∈ A(Ω, µ).

Proof. Let z ∈ Ω. Define a linear function

δz : A(Ω, µ) → C

as follows:
δz(f) = f(z).

Since the set {z} is compact there exists a number C ∈ [ 0,∞) such that∣∣f(z)
∣∣2 ≤ C ·

∫
Ω

|f |2 dµ

for all f ∈ A(Ω, µ). It follows that∣∣δz(f)
∣∣ ≤ √

C · ‖f‖
for every f ∈ A(Ω, µ). In other words, the function δz is continuous. We now use the
fact that A(Ω, µ) is a Hilbert space. According to the Riesz-Frechet representation
theorem there exists a unique function Kz ∈ A(Ω, µ) such that δz(f) = 〈f,Kz〉 for
all f ∈ A(Ω, µ). In other words

f(z) =
∫

Ω

f ·Kz dµ

for all f ∈ A(Ω, µ). But this is exactly what we wanted to prove. �

Corollary 4.3. Let Ω be a nonempty open subset of C and let µ be a Bergman
measure on Ω. Then there exists a unique function

K : Ω× Ω → C

such that for every z ∈ Ω, the function w 7→ K(w, z) is an element of A(Ω, µ), and

f(z) =
∫

Ω

f(w) ·K(w, z) dµ(w) for every f ∈ A(Ω, µ) and every z ∈ Ω.

Proof. Define, for w, z ∈ Ω, K(w, z) = Kz(w), where Kz is as in the previous
theorem. It is trivial to see that this function K has the desired properties. �

The function K is called the Bergman kernel associated with Ω and µ. It allows
one to reconstruct the value for any function in any of its points.

We will continue to denote the function w 7→ K(w, z) as Kz. Using our inner
production notation we have, for z ∈ Ω, and f ∈ A(Ω, µ),

f(z) = 〈f,Kz〉.
This leads to a few elementary results.

Proposition 4.4. Let K be the Bergman kernel associated with Ω and µ. Let
w, z ∈ Ω. Then

K(z, w) = K(w, z).

Proof.

K(z, w) = Kw(z) = 〈Kw,Kz〉 = 〈Kz,Kw〉 = Kz(w) = K(w, z). �

Proposition 4.5. Let K be the Bergman kernel associated with Ω and µ. Let
z ∈ Ω. Then

K(z, z) = ‖Kz‖2.
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Proof.
K(z, z) = Kz(z) = 〈Kz,Kz〉 = ‖Kz‖2. �

Corollary 4.6. For every z ∈ Ω,

K(z, z) ≥ 0.

The following proposition tells us exactly how big a function can become at
a certain point, compared to its norm. It is a direct consequence of the Cauchy-
Schwarz inequality.

Proposition 4.7. Let K be the Bergman kernel associated with Ω and µ. Let
z ∈ Ω, f ∈ A(Ω, µ). Then ∣∣f(z)

∣∣ ≤√K(z, z) · ‖f‖.
Equality occurs if and only if f is a multiple of Kz.

Proof. ∣∣f(z)
∣∣ = 〈f,Kz〉 ≤ ‖f‖ · ‖Kz‖ = ‖f‖ ·

√
K(z, z).

Should equality occur, then 〈f,Kz〉 = ‖f‖ · ‖Kz‖, but this can happen only if the
function f and Kz are linearly dependent. �

Proposition 4.8. Let K be the Bergman kernel associated with Ω and µ. Let
(hi)i∈I be an orthonormal base of A(Ω, µ). Let w, z ∈ Ω. Then

K(w, z) =
∑
i∈I

hi(w) · hi(z).

Proof.

Kz =
∑
i∈I

〈Kz, hi〉 · hi =
∑
i∈I

〈hi,Kz〉 · hi =
∑
i∈I

hi(z) · hi. �

The above proposition tells us that the Bergman kernel can be computed from
orthonormal bases. This will now be the focus on our attention.



CHAPTER 5

The Lebesgue Measure on the Unit Disc

We inspect the Lebesgue measure on the unit disc ∆. On the unit disc we have
the ‘powers of z’, z0, z1, z2, . . . . Clearly every one of these functions is a member
of A(∆, λ).

Lemma 5.1. The functions z0, z1, z2, . . . form an orthogonal set. Furthermore,

‖zn‖ =
√

π

n+ 1
for each n ∈ N.

Proof. Let n,m ∈ N. Then

〈zn, zm〉 =
∫

∆

znzm dz

=
∫ 1

0

ρ

∫ 2π

0

(ρeiθ)n(ρeiθ)m dθ dρ

=
∫ 1

0

ρ

∫ 2π

0

ρn+me(n−m)iθ dθ dρ

=

{
π

n+1 if n = m;
0 otherwise.

�

Theorem 5.2. Let f ∈ A(∆, λ). Let a0, a1, a2, . . . be numbers such that

f(z) =
∞∑

j=0

ajz
j for each z ∈ ∆.

Let n ∈ N. Then
〈f, zn〉 =

π

n+ 1
· an.

Proof.

〈f, zn〉 =
∫

∆

f(z)zn dz

=
∫ 1

0

ρ

∫ 2π

0

f(ρeiθ)(ρeiθ)n dθ dρ

=
∫ 1

0

ρ

∫ 2π

0

( ∞∑
j=0

aj(ρeiθ)j

)
(ρeiθ)n dθ dρ

= π · an

∫ 1

0

2ρ · ρ2n dρ

=
π

n+ 1
· an. �

The difficulty with the above theorem is that the power series for a function
converges locally uniformly. We do not know a priori whether the power series also
converges with the L2-norm. Of course, if it did, the proof would simply be an
application of the preceding lemma.

18
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Corollary 5.3. Let f ∈ A(∆, λ) be such that

f ⊥ zn

for each n ∈ N. Then f = 0.

Proof. The function f has a power series expansion on the unit disc: f(z) =
a0 + a1z + a2z

2 + · · · . Then 〈f, zn〉 = 0 for all n ∈ N. But that means that an = 0
for all n ∈ N. In other words, f = 0. �

Corollary 5.4. Let

en(z) =

√
n+ 1
π

· zn (z ∈ ∆, n ∈ N)

Then (en)n∈N is an orthonormal base for the Bergman space A(∆, λ).

Proof. We have just seen that ‖en‖ = 1 for all n ∈ N. Let f ∈ A(∆, λ) be
such that f ⊥ en for all n. Then also f ⊥ zn for all n. Hence f = 0. �

Note that each function en has a norm of 1, but that en → 0 locally uniformly!

Theorem 5.5. Let K be the Bergman kernel associated with the unit disc ∆
and the Lebesgue measure on it. Let w, z ∈ ∆. Then

K(w, z) =
1

π(1− wz)2
.

Proof.

K(w, z) =
∞∑

n=0

√
n+ 1
π

· wn ·
√
n+ 1
π

· zn

=
1
π

∞∑
n=0

(n+ 1)(wz)n

=
1

π(1− wz)2
. �

Corollary 5.6 (Bergman’s formula). Let f ∈ H(∆) be such that∫
∆

|f(w)|2 dw <∞.

Let z ∈ ∆. Then

f(z) =
1
π

∫
∆

f(w)
(1− wz)2

dw.



CHAPTER 6

Rotation-invariant Measures on the Unit Disc

In this chapter we characterize a certain class of Bergman measures. One thing
one might ask about Bergman measures is whether there is any ‘geometric’ property
that characterizes them. For example, every Bergman measure µ on Ω must satisfy
µ(Ω \ E) > 0 for every compact subset E of Ω. This property, although necessary,
is far from sufficient. However, if we restrict ourselves to a certain class of measures
the property does become sufficient.

We define a map T from the set of measures on the ‘unit interval’ [ 0, 1) to the
set of measures on the unit disc ∆ as follows.

Definition. Let ν be a measure on [ 0, 1). For a measurable subset X of ∆,
let

T (ν)(X) =
1
2

∫
[ 0,1)

∫ 2π

0

1X(
√
ρeiθ) dθ dν(ρ).

For any measurable function f on the unit disc for which
∫
∆
|f | dT (ν) <∞, we

have ∫
∆

f dT (ν) =
1
2

∫
[ 0,1)

∫ 2π

0

f(
√
ρeiθ) dθ dν(ρ).

Using polar coordinates, one quickly verifies that

T
(
λ[ 0,1)

)
= λ∆.

More generally, let ω : [ 0, 1) → [ 0,∞ ] be a measurable function. Define the function
ω̃ : ∆ → [ 0,∞ ] by

ω̃(z) = ω
(
|z|2
)
.

Then
T
(
ωλ[ 0,1)

)
= ω̃λ∆.

Note that T (ν)(∆r) = π · ν
(
[ 0, r2)

)
for all r ∈ (0, 1 ]. In particular, if the

measure ν is finite, then so is T (ν), and vice versa.

Theorem 6.1. Let ν be a measure on [ 0, 1) that is such that T (ν) is a Bergman
measure. Then

ν
(
[0, r)

)
<∞ and ν

(
[ r, 1)

)
> 0 for each r ∈ (0, 1).

Proof. Let r ∈ (0, 1). Choose a number s ∈ (0, 1) such that s2 > r. The set
∆s is contained within a compact subset of ∆, and hence T (ν)(∆s) <∞. It follows
that ν

(
[ 0, r)

)
<∞. On the other hand, the set ∆ \∆s cannot have measure zero,

by theorem 3.2. It then follows that ν
(
[ r, 1)

)
> 0. �

Amazingly, the converse of the above theorem is also true.

Theorem 6.2. Let ν be a measure on [ 0, 1) that is such that

ν
(
[0, r)

)
<∞ and ν

(
[ r, 1)

)
> 0 for each r ∈ (0, 1).

Then T (ν) is a Bergman measure.

20
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Proof. Let E be a compact subset of ∆. Then there exists a number r ∈ (0, 1)
such that E ⊆ ∆r. Since T (ν)(∆r) = π · ν

(
[ 0, r2)

)
<∞, it follows that T (ν)(E) <

∞ .
Define numbers M0, M1, M2, . . . in [ 0,∞ ] as follows:

Mn =
∫

[ 0,1)

tn dν(t) (n ∈ N).

Let z ∈ ∆. There exists a number r ∈ [ 0, 1) be such that r > |z|. Choose such
a number. Let n ∈ N. Then∫

[ 0,1)

tn dν(t) ≥
∫

[ r,1)

tn dν(t) ≥
∫

[ r,1)

rn dν(t) = rn · ν
(
[r, 1)

)
.

We see that
Mn > 0

and ∣∣∣∣ 1
Mn

zn

∣∣∣∣ ≤ 1
ν
(
[r, 1)

) · ∣∣∣z
r

∣∣∣n .
It follows that the power sequence

∞∑
n=0

1
Mn

zn

converges for every z ∈ ∆. (Note that there may be some numbers n for which Mn

is infinitely large.)
Define a function K : ∆×∆ → C as follows:

K(w, z) =
1
π

∞∑
n=0

1
Mn

(wz)n (w, z ∈ ∆).

Let f, g ∈ H(∆) be such that
∫
∆
|f |2 dT (ν) <∞ and

∫
∆
|g|2 dT (ν) <∞. Choose

numbers a0, a1, a2, . . . and b0, b1, b2, . . . such that, for each z ∈ ∆, f(z) =∑∞
n=0 anz

n and g(z) =
∑∞

n=0 bnz
n.

We try to express the norm of f as well as the inner product of f and g in
terms of the numbers an and bn.

We have ∫
∆

|f |2 dT (ν) =
1
2

∫
[ 0,1)

∫ 2π

0

∣∣f(
√
ρeiθ)

∣∣2 dθ dν(ρ)
= π

∫
[ 0,1)

∞∑
n=0

|an|2ρn dν(ρ)

= π
∞∑

n=0

|an|2Mn.

(Note that the above also holds in case
∫
∆
|f |2 dT (ν) = ∞.)

Similarly, we see that ∫
∆

fg dT (ν) = π
∞∑

n=0

anbnMn.

Let z ∈ ∆. Denote the function w 7→ K(w, z) by Kz. Obviously, Kz ∈ H(∆).
But we also see that ∫

∆

|Kz|2 dT (ν) =
1
π

∞∑
n=0

|z|2

Mn
= K(z, z).
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In particular,
∫
∆
|Kz|2 dT (ν) <∞. It follows that∫

∆

fKz dT (ν) =
∞∑

n=0

anz
n = f(z),

hence ∣∣f(z)
∣∣2 ≤ K(z, z) ·

∫
∆

|f |2 dT (ν).

The function z 7→ K(z, z) is bounded on compact subsets of ∆. It follows that
T (ν) is a Bergman measure. �

The proof also gives some impression as to what the Bergman space and the
Bergman kernel look like. In particular, we have the following.

Theorem 6.3. Let ν be a measure on [ 0, 1) such that T (ν) is a Bergman mea-
sure. If ν is finite, the space A

(
∆, T (ν)

)
is infinite-dimensional, and the functions

z0, z1, z2, . . . form an orthogonal base for that space. If ν is infinite, A
(
∆, T (ν)

)
consists only of the constant function 0.

Proof. Let M0, M1, M2, . . . and the function K be as in the proof of the
previous theorem.

Suppose, ν is infinite. Then the numbers Mn are all infinite. It follows that
K(z, z) = 0 for every z ∈ ∆, and hence A

(
∆, T (ν)

)
= {0}.

Suppose, ν is finite. Then the (infinitely many) functions z0, z1, z2, . . . are
elements of A

(
∆, T (ν)

)
. One quickly verifies that each of these is pairwise orthog-

onal. Hence, A
(
∆, T (ν)

)
is infinite-dimensional. Let f ∈ A

(
∆, T (ν)

)
be such that

f ⊥ zn for all n ∈ N. By evaluating 〈f, zn〉 as in the proof of the previous theo-
rem, we conclude that all power series coefficients of f must vanish, hence f = 0.
It follows that the functions z0, z1, z2, . . . form an orthogonal base for the space
A
(
∆, T (ν)

)
. �

All measures in the range of T are rotation-invariant, that is, every measure µ
in the range of T satisfies

µ(eiθX) = µ(X)
for every measurable set X ⊆ ∆ and every real number θ. In fact, every rotation-
invariant measure on the unit disc is in the range of T . (This is the only reason for
introducing T to begin with.)

Theorem 6.4. Let µ be a rotation-invariant measure on the unit disc. Then
there exists a measure ν on [ 0, 1) such that µ = T (ν).

Proof. Let ϕ be the function on the unit disc defined by ϕ(z) = |z|2. Define
a measure ν on [ 0, 1) by

ν(Y ) =
1
π
µ
(
ϕ−1(Y )

)
.

Let µ′ = T (ν). Then µ′ is a rotation-invariant measure on the unit disc. We are
done if we can show that the measures µ and µ′ are identical. Let a, b ∈ [ 0, 1),
a < b. By definition of ν,

µ
(
ϕ−1([ a, b))

)
= π · ν

(
[ a, b)

)
.

And by definition of µ′,

µ′
(
ϕ−1([ a, b))

)
=

1
2

∫ ∫ 2π

0

1ϕ−1([a,b))(
√
ρeiθ) dθ dν(ρ)

= π

∫
1ϕ−1([ a,b))(

√
ρ) dν(ρ)

= π · ν
[
a, b)

)
.
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Hence, µ(X) = µ′(X) for each set X that is of the form ϕ−1
(
[ a, b)

)
, that is, either

a disc or an annulus with centre 0. Since both µ and µ′ are rotation-invariant, it
follows that µ(X) = µ′(X) for every set X that is of the form{

z ∈ ∆ : a ≤ |z|2 < b and θ − π
n ≤ arg z < θ + π

n

}
,

where a, b ∈ [ 0, 1), θ ∈ R and n ∈ N∗. But the Borel-σ-algebra of ∆ is generated
by these sets. It follows that µ = µ′. �

We can now completely characterize all rotation-invariant Bergman measures
on the unit disc.

Theorem 6.5. Let µ be a rotation-invariant measure on the unit disc. Then
µ is a Bergman measure if any only if

µ(∆r) <∞ and µ(∆ \∆r) > 0 for every r ∈ (0, 1).

Theorem 6.6. Let µ be a rotation-invariant Bergman measure on the unit disc.
If µ is finite, the space A(∆, µ) is infinite-dimensional. Otherwise, A(∆, µ) = {0}.



CHAPTER 7

The Bergman Kernel and Conformal Mappings

We conclude this paper with the classical result linking the Bergman kernel to
the problem of mapping simply-connected domains onto the unit disc.

Theorem 7.1. Let Ω1 and Ω2 be two nonempty open subsets of C that are
such that there exists a conformal mapping ϕ from Ω1 onto Ω2. Then the Bergman
spaces A(Ω1, λΩ1) and A(Ω2, λΩ2) are isomorphic.

Proof. During the proof, the inner products on the spaces A(Ω1, λΩ1) and
A(Ω2, λΩ2) will be denoted by 〈 , 〉1 and 〈 , 〉2, respectively.

Let f ∈ H(Ω2). By the transformation theorem,∫
Ω2

|f(w)|2 dw =
∫

Ω1

∣∣f(ϕ(w)
)∣∣2 · ∣∣ϕ′(w)

∣∣2 dw.
It follows that

f ∈ A(Ω2, λΩ2) ⇐⇒ f ◦ ϕ · ϕ′ ∈ A(Ω1, λΩ1).
Hence, we can define a linear operator T from A(Ω2, λΩ2) to A(Ω1, λΩ1) by

Tf = f ◦ ϕ · ϕ′ (f ∈ A(Ω2, λΩ2).)

Let g, h ∈ A(Ω2, λΩ2). Then

〈Tg, Th〉1 =
∫

Ω1

g
(
ϕ(w)

)
· ϕ′(w) · h

(
ϕ(w)

)
· ϕ′(w) dw

=
∫

Ω1

g
(
ϕ(w)

)
· h
(
ϕ(w)

)
·
∣∣ϕ′(w)

∣∣2 dw
=
∫

Ω2

g(w) · h(w) dw

= 〈g, h〉2
It follows that T is an isometry.
Let ψ be the inverse of ϕ. Then ψ is a conformal mapping from Ω2 onto Ω1.

According to the chain rule for differentiation,

ψ′ ◦ ϕ · ϕ′ = 1,

and
ϕ′ ◦ ψ · ψ′ = 1.

It is then easy to see that the operator

f 7→ f ◦ ψ · ψ′

is an inverse of T . Hence, T is unitary. �

Theorem 7.2. Let Ω1 and Ω2 be two nonempty open subsets of C that are such
that there exists a conformal mapping ϕ from Ω1 onto Ω2. Let K1 be the Bergman
kernel of A(Ω1, λΩ1), and let K2 be the Bergman kernel of A(Ω2, λΩ2). Then

K1(w, z) = K2

(
ϕ(w), ϕ(z)

)
· ϕ′(w) · ϕ′(z) for all w, z ∈ Ω1.

24
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Proof. Let T be the unitary operator that we used in the proof of the previous
theorem:

Tf = f ◦ ϕ · ϕ′ (f ∈ A(Ω2, λΩ2).)
Let z ∈ Ω1.
Let f ∈ A(Ω2, λΩ2). Then

Tf(z) = 〈Tf,K1z〉1.
But also

Tf(z) = ϕ′(z) · f
(
ϕ(z)

)
= ϕ′(z) · 〈f,K2ϕ(z)〉2
= ϕ′(z) · 〈Tf, TK2ϕ(z)〉1
= 〈Tf, ϕ′(z) · TK2ϕ(z)〉1

Summarizing, we have

〈Tf,K1z〉1 = 〈Tf, ϕ′(z) · TK2ϕ(z)〉1 for all f ∈ A(Ω2, λΩ2).

Since T is surjective, it follows that

K1z = ϕ′(z) · TK2ϕ(z)

= ϕ′(z) ·K2ϕ(z) ◦ ϕ · ϕ′ �

Corollary 7.3. Let Ω be an open simply-connected proper subset of C. Let
z ∈ Ω. There exists a unique conformal mapping ϕ that maps Ω onto the unit
disc and that is such that ϕ(z) = 0 and ϕ′(z) > 0. Let K be the Bergman kernel
associated with Ω and the Lebesgue measure. Then, for all w ∈ Ω,

K(w, z) =
1
π
· ϕ′(w) · ϕ′(z),

and
ϕ′(w) =

√
π

K(z, z)
·K(w, z).

Proof. The existence of ϕ is established by the Riemann mapping theorem.
Let K∆ be the Bergman kernel associated with the unit disc and the Lebesgue
measure. Let w ∈ Ω. Then

K(w, z) = K∆

(
ϕ(w), ϕ(z)

)
· ϕ′(w) · ϕ′(z)

=
1

π
(
1− ϕ(w)ϕ(z)

)2 · ϕ
′(w) · ϕ′(z)

=
1
π
· ϕ′(w) · ϕ′(z).

This proves the first equation.
Since ϕ′(z) is positive, it follows that ϕ′(z) =

√
π ·K(z, z). This proves the

second equation. �

For simply-connected regions, one can construct the Bergman kernel from a
mapping onto the unit disc. Remarkably, we see that one can also do the opposite,
i.e. construct a mapping onto the unit disc using the Bergman kernel. Most of the
time however, computing a Bergman kernel proves to be completely impossible, so
unfortunately this method of constructing a conformal mapping onto the unit disc
is not as useful as it might appear.
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